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Introduction

Concerns around heightened cybersecurity risk
environments naturally include so-called Hybrid Warfare
and, specifically, Information Warfare (IW) (Libicki 2020;
Beskow 2020; Lin & Kerr 2017; Zannettou et al,
Proceedings of the 10th ACM Conference on Web
Science 2019; Connell & Vogler 2017). Increasing
scrutiny around the cyber resilience of computer
systems in a contested Information Warfare
environment led in early 2022 to the March 15th
passage and signing of bipartisan US legislation to
require cyber incident reporting by organizations in what
are deemed “critical infrastructure” sectors (Conger
2022, Conger 2022; The White House 2022). This
cyber incident reporting legislation is  not
all-encompassing; rather it initiates the assembly of
critical information about cyber attacks against US
companies into a central repository that can be
accessed by US intelligence and law enforcement
agencies. At the time of writing it is unclear how specific
reporting requirements will take shape.

This paper aims in part to provide a practical and
immediately actionable framework to aid organizations
in early compliance with regulatory requirements.
Rather than survey the vast and constantly expanding
cybersecurity field, this paper focuses on assessing and
pragmatically improving the cyber resilience of artificial
intelligence/machine learning systems within the
contested Information Warfare environment, as well as
formalizing and operationalizing the production of
artifacts for regulatory compliance.

Artificial Intelligence systems are, at their core,
information processing systems. As such they have
particular vulnerabilities, and due to their propagation
now in virtually every aspect of society (Chopra & Singh
2018; Ntoutsi et al 2020), a special set of potential
downstream consequences for failure.

Mass manipulation of social media algorithms is
now possible and in many cases even convenient for
non-state actors (Beskow 2020; Mejias & Vokuev
2017). The use of bots, as well as surrogates
(sometimes called “orange actors”) in cyber
warfare—potentially  including state or criminal
alliances—has been demonstrated effective in disrupting
networks at scale (Im et al 2020; Shao et al, PLoS ONE
2018). Bots and surrogates may work to mask
attribution in coordinated cyber campaigns (Keller et al
2019; Snyder et al 2020); the proliferation of
AIML-backed platforms means that mass manipulation
of social networks and their algorithms can cause
unsuspecting individuals to become participants in a
message’s spread (Badawy, Lerman & Ferrara 2018;
Ahmed 2021; DiResta 2021), further complicating the
task of attribution. The rapid increase of production
AIML systems for both offensive and defensive security
purposes generates a  low-risk,  high-reward
environment for potential attackers.

There has been much discussion around how
algorithms used in social media and other platforms aid

in the dissemination of certain messages over others,
and how these features are exploitable in production by
bad actors (Zannettou et al, Companion Proceedings of
The 2019 World Wide Web Conference 2018; Shao et
al, Nature Communications 2018), the probabilistic
distributions of various types of messages most likely to
be amplified by their relative position along a political
spectrum (Chowdhury, Belli, and Lamar 2021, and
Chowdhury, Belli, & Lamar 2021; Huszar et al 2022),
and how this so-called algorithmic amplification, in
conjunction with the lack of transparency from the
platforms themselves with regard to algorithmic
decisions in both design and use phases, is readily
exploitable by maleficent actors (European Union
Counter-Terrorism Coordinator 2020; Dumbrava 2021)
with the potential to disrupt democratic norms
(European Parliament 2021; Christodoulou & lordanou
2021).

These discussions are rapidly moving beyond the
theoretical, as illustrated by an increasing number of
calls from diverse segments of society to legislate new
regulations for AIML platforms (Lee, Resnick, & Barton
2019; Adesina, Kearns, & Roth 2020; Mdkander &
Axente 2021; European Parliament 2021) and hold
organizations legally accountable for the messages
they propagate (Kirtley 2022; Kornbluh 2022; Diamantis
2020; Barocas & Selbst 2016; Koshiyama et al 2021).
There is also literature around effective network and
cloud security applications of AIML; referencing the
state-of-the-art or current technologies here would
prove ineffective as these technologies are evolving
rapidly.

For these reasons, a generalizable framework to
allow organizations to probe their security
dependencies and develop decision criteria for resource
allocation vis-a-vis AIML information processing
systems and Information Warfare (IW) is needed.

Frontier developments in AIML research,
however--including the recent proliferation of ethics and
bias frameworks--demonstrate that frameworks are not
enough. Ethics and auditing frameworks are widely
acknowledged as efforts to reduce the harm of AIML
systems (Raji & Buolamwini 2019; Bandy 2021), but for
many organizations, their implementation remains
elusive (Jobin, lenca & Vayena 2019; Stahl et al 2022).
Practitioners often find broad latitude for interpretation
in such systems, and organizations vary in their
implementations (Ibafez, Camacho & Olmeda 2021).
Frameworks tend to be either too high-level and thus
difficult to implement in practice, or on the opposite end
of the spectrum, too specific to be generalizable (Morley
et al, Minds Mach 2021); and while many frameworks
exist, there is considerable overlap among them (Ryan
et al 2021). Specifically, practitioners indicate difficulty
with operationalizing bias-aware development due in
part to the sheer number of high-level frameworks and
the comparative lack of guidance on implementation
(Morley et al, Al & SOCIETY 2021).

It is also important to consider that implementation
is never free, and the cost of experimentation must be



factored into the development of a bridge between the
high-level/theoretical, and actionable  production
pipelines. Organizations run the risk of ethics-washing
and other pitfalls if ethics frameworks are implemented
poorly (Floridi 2019), rendering any such efforts
potentially meaningless and the resources invested in
their development wasted. With little guidance on
practical implementation, teams are often left on their
own to bridge this gap. Despite organizational, social,
and even government interest in AIML ethics reform,
the Pew Research Center warned that robust industrial
implementation of AIML harm reduction could take
years to come (2021).

The focus of this paper is thus both measuring and
improving cyber resiliency of artificial
intelligence/machine learning (AIML) systems in an
adversarial Information Warfare (IW) environment, via
actionable Machine Learning Operations (MLOps)
pipelines, in production. The specific aim of this paper is
to provide a practical, workable blueprint for immediate
steps AIML practitioners and organizations can take to
both assess and increase the resilience of their systems
to IW attack vectors, with an awareness and integration
of MLOps best practices in a rapid-deployment
environment.

MLOps-First Approach

MLOps (machine learning operations) is “a set of
standardized processes and technology capabilities for
building, deploying, and operationalizing ML systems
rapidly and reliably” (Salama, Kazmierczak, and Schut
2021). MLOps is analogous to the DevOps and
DataOps fields in its focus on rapid deployment and
scalability through the formalization and
operationalization of mission-critical data processing
actions:

[MLOps] advocates formalizing and (when
beneficial) automating critical steps of ML system
construction. MLOps provides a set of standardized
processes and technology capabilities for building,
deploying, and operationalizing ML systems rapidly and
reliably. MLOps supports ML development and
deployment in the way that DevOps and DataOps
support application engineering and data engineering
(analytics). The difference is that when you deploy a
web service, you care about resilience, queries per
second, load balancing, and so on. When you deploy
an ML model, you also need to worry about changes in
the data, changes in the model, users trying to game
the system, and so on (ibid).

MLOps best practices, such as formalizing a
process by which new models are reviewed before
being deployed, increase both resilience and security of
a system by providing a baseline to return to in case of
a problem—and hopefully by ensuring that problematic
models are never deployed in the first place.

Yet despite these and many other clear benefits,
many practitioners in the industry remain slow to adopt
MLOps best practices and continue to engage in ad hoc

experimentation which is difficult to scale and often
results in very little actual model deployment. A report
by Deloitte published in the Harvard Business Review
(Ronanki & Davenport 2017) listed integration issues
(and the talent to remedy these) as chief bottlenecks in
producing actionable AIML, and a 2020 McKinsey study
found that standardized, scaleable development
processes were a key differentiator in high-performing
AIML organizations (Balakrishnan et al).

Conversely, larger organizations have had difficulty
responding effectively to adversarial algorithmic
manipulation in part due to the scale of their
deployment and degree of automation, and automation
of AIML systems is likely to increase as more
stakeholders adopt an MLOps approach to
development. The scale and speed of deployment of
modern AIML systems—combined with the near-ubiquity
of their adoption at nearly every layer of the
socio-technological stack—indicates a need for urgency
in the development of scalable, MLOps-intelligent cyber
readiness assessment metrics.

MLOps is a relatively nascent discipline. At the time
of this writing, there are many papers in the field, and
current research often focuses on the unification and
taxonomy of the varying methodologies and lexicons.
However, there are few references to AIML system
cyber resiliency, either direct methodology or
evaluation. There is thus an urgency to holistically
integrate cyber resilience metrics which are specifically
tailored to Al applications, and MLOps-aware for ease
of adoption in industry and government.

The cyber metrics framework presented in this
paper is adapted in part from a report prepared by
RAND Project AIR FORCE (PAF), a division of the
RAND Corporation, and the U.S. Air Force’s federally
funded research and development center. The report,
Measuring Cybersecurity and Cyber Resiliency (Snyder
et al 2020), was originally created to draft a framework
for scoring the cyber readiness of United States Air
Force weapons systems across two distinct vectors,
cybersecurity and cyber resiliency. This paper uses
these terms similar to the Department of Defense
definitions referenced in the PAF report: referring to a
system’s ability to withstand attack (cybersecurity),
versus its ability to recover to a stable state
post-incident (cyber resilience).

Artificial intelligence systems are not necessarily
weapons systems, although some are. However, even
those in use in non-defense applications are arguably
so embedded in critical socio-technical systems that
assessing their ability to be resilient to information
warfare (IW) attack vectors is crucial to national
security. This paper aims to apply lessons from the
RAND PAF weapons systems cyber readiness scoring
research to create a baseline cyber/IW readiness
scoring framework for Al systems in production.

Machine learning/artificial intelligence systems,
referred to in this paper as AIML, rely on
information—data—to make what humans might term



inference. The extent to which Al systems are
“intelligent” is the extent to which they have “learned” (in
other words, been trained on) some subset of data, and
the extent to which the selected data subset mirrors real
life. Without good data, there is no possibility for optimal
Al, and Al systems affect critical aspects of everyday
citizens’ lives on levels too numerous to list here in
detail, from military to transportation, banking, and
finance. Information Warfare can also be understood as
Data Warfare; thus Al practitioners must be increasingly
vigilant in heightened IW threat environments.

Red vs Blue Formulation

This paper utilizes the Red/Blue attack/defend
formulation typical in cybersecurity settings. While this
framework may be unfamiliar to AIML practitioners, the
two-team model provides useful game-theoretical
analysis points in an adversarial security environment.

In the two-team model, Red represents the
offensive/attacking team, and Blue represents the
defensive/organizational security team. Additional color
teams for AIML Ops have been proposed with potential
benefits for organizational and managerial analysis
(Kalin, Noever & Ciolino 2021); these are outside the
scope of this paper, which refers exclusively to the
Red/Blue security formulation.

Red’s Attack Path

The RAND PAF report defines a high-level attack
path for Red involving four basic, non-sequential
attributes of any successful Red offensive—or in the
language of the report, “actions” that Red must carry
out in order to complete a successful attack. These
attributes are access, knowledge, capability, and
impact:

At the highest level, Red must do four things: (1)
access the system in question (access) and (2) know
enough about it to execute an attack (knowledge), and
(3) have the resources and capability to carry out the
attack (capability) and (4) create an effect that has
significant negative mission repercussions to the
defender (impact) (Snyder et al 2020).

This analysis gives rise to a defined attack path for

Red with a Boolean relational structure among the
elements: at the highest level, the elements are

Attacker's Costs

connected by Boolean and statements, indicating that
Red must complete all actions/attributes in order to be
successful at disrupting Blue’s mission operations;
Boolean relationships become more varied at
increasing levels of decompositional granularity (fig 1).

While these four high-level categories must all be
achieved for Red to claim a successful attack against
Blue, within each category, Red has a series of options,
with potentially differing relationships at various levels
of decomposition. For example, within the access
metacategory, Red may achieve this requirement
through any of several means, such as through supply
chain access or via insider threat. Because Red
generally needs only one viable vector to achieve
access, these potential vectors are connected by
Boolean or statements. This is contrasted with the
knowledge metacategory, where although Red may
attain knowledge of Blue’s systems through any of a
number of means—connected by Boolean or
statements—there is an additional constraint, labeled
currency, which Red must satisfy in order to achieve
success in this category: “Red needs to act on
knowledge it has collected before Blue makes any
relevant changes to the targeted weapon system”
(Snyder et al 2020). While vectors for Red to gain
knowledge such as publicly shared information via
open-source intelligence (OSINT) and exfiltration (such
as espionage) are connected by statements indicating
that Red can utilize any one of these, all knowledge
must maintain currency to be used effectively against
Blue. In other words, Red may gain publicly available
knowledge via OSINT or privately held (secret)
knowledge via exfiltration, and that knowledge must be
current, in order to impact Blue.

Properly applied, this relational framework can
suggest areas of potential vulnerability to Red attacks,
as well as paths of most efficient resource allocation for
Blue:

This framework emerges from the fact that some
actions that Red must take must all be done, and, in
other cases, Red has options. The four high-level
actions...are linked by Boolean and statements
because each must happen or the attack is thwarted.
Because Red must do all four to some degree, reducing
the likelihood of success of one or more of them
increases the likelihood of interrupting the attack path.
The greater the number of these four actions that the
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Fig 1: Boolean relationships among elements of Red’s attack vectors



defender can inhibit, and the greater the confidence in
inhibiting each, the more difficult the job of the attacker
and the more survivable and effective the system is in
that cyber environment (ibid.).

The strength of this system as applied to
algorithmic models & artificial intelligence systems lies
in the Boolean relationships among Red’s attack paths
and methods. The framework is designed to allow a
thorough analysis of any system through the
decomposition of Red attack vectors while avoiding
being either overly prescriptive or quantitative in a field
where applicable technologies, and the bleeding edge
itself, are constantly shifting (ibid.).

Special Considerations for Red-Blue
Attach Path Analysis of AIML Systems

Red’s four requirements for  successful
attack—access, knowledge, capability, and impact-take
on new significance when applied to AIML systems in
an IW context. For example, an attacker attempting to
exert influence over a public-facing system may gain
knowledge of the models that power it by probing the
system to test for patterns in behavior (Chase, Ghosh &
Mabhloujifar 2021); proprietary knowledge of the models’
code is not needed. Public manipulation of social media
platforms’ algorithms to self-promote is a non-malicious
example of how entities may influence a model's
outputs without direct access to the model itself.

Another category in which the calculus differs
significantly from more traditional cybersecurity attack
surfaces is the access requirement. Because AIML
systems are only as intelligent as the data on which
they are trained, an attacker does not need access to
models themselves to impact their outputs—only to their
datasets. When these datasets are created from
publicly available sources—particularly non-curated,
mass-scraped—Red’s access is defacto & definitionally
guaranteed. This consideration applies to AIML
systems that utilize one-time or continuous web
scraping, as well as those using models pre-trained on
public datasets. Continuous data scraping entails its
own vulnerabilities due to the dynamic nature of the
data being harvested; when the system interacts with
the data it scrapes, the potential for algorithmic
feedback amplifies Red attack vectors. This potential
attack vector amplification is discussed in greater detail
below; however for now it should be understood that
any potential algorithmic feedback loop grants Red
access to the model itself by allowing Red to interact
with—and in some cases, co-create—the training data.

While Red’s potential impact with IW algorithmic
attacks has already been discussed elsewhere in great
detail, an important and often-overlooked aspect of
AIML attack surfaces is the interplay of Red’s
knowledge, access, and capability-and how these work
to bolster one another.

A final dimension to consider is the availability of Al
to Red to amplify and aid in attacks. Examples include

scripts using GANs to create photos of people who
never existed in order to propagate fake social media
accounts, and Al-enabled mass content- &
persona-management systems that can exert
artificial/unintended influence over systems.

The OODA Loop & Game Theoretical
Modeling of Information Warfare Scenarios

The Boolean and relationship between Red’s
various means of gaining either secret or publicly held
knowledge of a system, and the currency of said
knowledge, indicates a need for Blue to remain within
Red’s observe, orient, decide, and act (OODA) loop (fig
2).

Fig 2: The OODA Loop

The OODA loop is an information processing and
decision framework used in military, law enforcement,
and other tactical mission operations; it has
demonstrated applications in game-theoretical modeling
of Information Warfare scenarios (Jormakka & Molsa
2005). The OODA loop—as an information processing
tool-is particularly suited for application to mass
information processing systems in an IW setting. This
section discusses the intersystem relationship between
artificial intelligence systems and their artifacts, and the
OODA loop in an adversarial security setting.

In a Red vs. Blue adversarial security framing, Red
must gather, filter, make decisions, and act on
information promptly to impact Blue. Atrtificial
intelligence systems may enhance Red’s ability to
complete each of these steps, via (as examples)
enhanced breadth and/or volume of information
collection capabilities, faster information processing,
and similar AIML-assisted reduction of time constraints.
AIML systems may also amplify the impact of Red
actions against Blue through network or other means.

Within the knowledge requirement, Red must
expend resources to gather information through either
OSINT or exfiltration, and this information must be
current enough for Red to utilize successfully against
Blue. In this example, Red’s capabilities in the domain
may be offset by a number of Blue actions, such as



changing system details frequently so that Red’s
hypothetical acquired system-related information is not
timely enough to be useful. In this way, Blue remains
within Red’s OODA loop: Red cannot gather, filter,
analyze, and apply data with enough speed to have a
significant impact on Blue. Red has expended
resources with no gain.

However, the potential for artificial intelligence
systems to aid in the processing of mass quantities of
data, and thus provide a boost in resource capability in
one or more of Red’s gather, filter, analyze, and apply
requirements, may change the calculus significantly for
Blue defenders. Atrtificial Intelligence applications for
filtering and analysis of both structured and
unstructured data speed these tasks up enormously. In
some cases, the gains are not just speed, but in the
new ability to process and derive meaningful
information—rapidly—in quantities of data previously
unimaginable. Artificial intelligence thus has current
applications in both exfiltration and OSINT intelligence
gathering which Blue must take seriously.

It should be noted that information gathering and
processing are not the sole domains of Red; Blue may
also utilize AIML systems in its intelligence-gathering
(INT) systems. In this respect, artificial intelligence
systems may significantly impact the adversarial OODA
loop, for better or for worse, on behalf of either side.

This paper notes an additional special use case of
the OODA loop with regard to AIML applications in the
Information Warfare (IW) context. The self-reinforcing
nature of some algorithmic applications, as well as
targeted disinformation attacks, may contribute to
tightening Red’s OODA loop in ways that can rapidly
become prohibitively difficult for Blue to overcome. For
example, algorithmic reinforcement loops could open a
potential Red attack vector in Al-driven security
systems via the use of adversarial means to gradually
train an anomaly detection system to ignore malicious
activity.

Disinformation campaigns are a particularly salient
example of the potential to exploit algorithmic
reinforcement within the IW context. Exploiting social
media algorithms to spread disinformation rapidly can
place Red in control of the information battlefield, and
tighten Red’s OODA loop beyond Blue’s ability to regain
narrative control or otherwise respond in a timely, and
thus effective, manner. Interconnections among social
graphs interact with algorithmic feed rankings resulting
in the decentralized and unpredictable spread, where
even unsuspecting individuals become participant
nodes (Mejias & Vokuev 2017; Badawy, Lerman &
Ferrara 2019). This amplification can not only make
attribution in the case of bad actors impossible, but it
can tighten the OODA loop in favor of attackers—as
Red’s targeted messaging is amplified, memed, and
interacted with via other in-system mechanisms—quickly
and in real-time.

Feedback loops, in which models directly interact
with the data and/or the populations generating data,

have emerged as a particular concern for AIML systems
with regards to ethics, fairness, and accountability, as
well as long-term model efficacy (Chaslot 2019; Sirbu et
al 2019; Liu et al 2020; Heidari, Nanda & Gummadi
2019; Mansoury et al. 2020). Feedback loops are also a
special security concern for AIML systems, as they can
dramatically increase Red’s access to Blue’s training
data, and thus to Blue’s models themselves. In a
scenario where Blue’s models are trained on some form
of scraped or otherwise publicly-generated data with
which they do not interact (or interact with only
passively), Red’s potential ability to gain access to
Blue’s training data, and thus influence Blue’s models,
is already a considerable attack vector—and this access
increases as Red is increasingly aware of Blue’s data
sources.

However, Red’s access potential via the data
vector is increased when Blue’s models interact with the
data on which they are trained. As two high-level
examples, consider (1) a social media feed that is
responsive to both trending topics (aggregation of mass
social data), and a particular user’s engagement
history, and (2) an AIML-driven security application
trained on historical data to detect malware (or any
anomalies in some type of network traffic).

In the case of (1) the social network, data is
aggregated en masse from users and stored in a
database; data about an individual user’s preferences
are similarly stored. These data are retrieved and
combined by the social network’s data scientists to
model the likelihood that showing a particular topic to a
specific user will generate engagement (vs, it can be
assumed, the likelihood of causing the user to
disengage with the platform). Topics or media are
presented to users, users engage with these media,
and the data on engagement is collected and fed back
into the model. Because Red actions can create data
on which the models are then trained, Red potentially
has increasingly direct access to the models
themselves (Jagielski et al 2021; Suya et al 2020; ).

Consider case (2), a security application
dynamically trained on historical data to detect
anomalies suggesting malware. Model re-training may
be continuous, periodic, or triggered by detected model
decay. If data are not checked thoroughly for drift or the
source of decay (i.e. data- or concept-drift) datasets
might be generated from new historical data, which,
over time, can introduce potentially malicious bias into
the model (Severi et al 2020; Yang et al 2022), making
a subsequent attack less likely to be flagged—and more
likely to succeed (Zheng & Baochun 2021). If the
system interacts with the public/gives Red access in a
way that allows Red to probe its behavior, thus
increasing Red’s knowledge, the speed with which this
“slow-shift” attack can occur may escalate dramatically
(Severi, Meyer & Coull 2021).

In the case of both (1) and (2), Red’s OODA loop is
tightened due to near-direct access to Blue’s models via
the training data—datasets of which Blue may have
inadvertently made Red a co-creator. When Red is



made a potential collaborator in Blue’s model training,
Blue loses the upper hand in any adversarial AIML
scenario. Increasing levels of data awareness on the
part of Red grants increasing access and efficiency of
attack (Deng et al 2020), and may even cause data
leakage (Chase, Ghosh & Mahloujifar 2021) leading to
the exfiltration of sensitive user or system data. Put
differently, giving Red access to the training data is
giving Red the keys to the system.

These two cases additionally illustrate a special
consideration with regard to bias: while bias is often
thought of as a purely ethical issue, in an Information
Warfare scenario it is arguably an even greater security
risk. Malicious biasing of models is no longer a future
hypothetical, and thus AIML practitioners must take bias
seriously as a security concern—via instituting,
formalizing, and operationalizing mitigating processes.

Additionally, due to the proliferation of very large
language models and other Natural Language
Processing (NLProc) systems in industrial applications,
and their susceptibility to malicious data poisoning
attacks (Chen et al 2020; Kurita, Michel & Neubig 2020;
Chen et al 2021; Wallace et al 2020; Yang et al 2021)
versus their relative lack of algorithmic auditing (Bender
et al 2021), it is possible to imagine a coordinated
large-scale attack vector wherein a sufficiently
motivated and Al-enabled attacker could disseminate
lexical disinformation at such scale as to produce
noticeable downstream effects within the models, and
subsequently, their applications (Bagdasaryan &
Shmatikov 2021). While these potential attacks might
seem far-fetched, their feasibility has been
demonstrated many times over in the literature. It
should be further noted that the scale of these models’
adoption, combined with that of the models themselves,
makes auditing their vulnerability—or potential social
impact—nearly impossible under current industry or
regulatory standards.

Finally, it should be noted that additional attack
vectors exist for Red; these, along with more detailed
attack descriptions, have been omitted here for security
reasons. Organizations are encouraged to decompose
Red’s Boolean attack path to assess specific IW risks
within their AIML systems.

Special Considerations for Red-Blue
Attach Path Analysis of AIML Systems

“Don’t Make the Perfect the Enemy of the Good.”
- Voltaire

The RAND Project Air Force (PAF) report
recommends scoring cybersecurity and cyber resiliency
using a maturity index, modeled off similar cyber metric
maturity indices published by the US Department of
Energy and the US Department of Homeland Security
(2014). The use of an index is intended to avoid overly
precise (and potentially misleading) quantifications in
favor of a range that reflects the subjective nature of the
evaluations (Snyder et al 2020).

The PAF report stresses both the importance of
skilled workers in creating assessments and in the
artifacts produced at the working level:

The most important product of the assessment at
the working level would be artifacts that document what
is being done to counter each of the Red actions. It is at
this level where the technical and operational details lie.
This level must do the most detailed assessment to
document the Blue countermeasures and their qualities
against Red. (24)

This focus on careful documentation of the
assessment process itself is complementary to an
MLOps approach to AIML development, where models
and their accompanying artifacts are stored in
repositories as part of the model governance process.

The PAF report also gives the following questions
to aid in assessment; the deeper the following
questions are assessed in the affirmative, the more
mature Blue’s cyber response systems are judged to
be:

* Has a baseline trusted state been defined for

each system to return to?

« Is continuous monitoring done?

* Have resilient methods been identified to return to

this state?

+ Can these actions respond within Red’s OODA

loop?

- Is the recovery time adequate for mission needs?

 Have these measures been implemented?

* Have they been exercised and tested?

- Have they been found to be adequate?

AIML systems present unique challenges &
potential pitfalls for security in a contested Information
Warfare environment. These challenges begin at model
development and data acquisition and continue
throughout the AIML application lifecycle. To meet these
challenges, the above questions are adapted at the
conclusion of this paper to provide a cogent and widely
applicable cyber resilience maturity assessment for
AIML systems.

In the following sections, this paper outlines
processes and artifacts specific to AIML systems that
can enhance the maturity of an organization’s AIML
cyber response. These processes and artifacts include
audits, Failure Modes and Effects Analyses (FMEASs),
adversarial testing, datasheets & model cards, and a
security/resilience portfolio to be checked into model
repos as models are developed and iteratively
improved.

Audits: a First Defense for AIML Systems

Audits are an important tool in the Blue security
arsenal. Robust AIML auditing protocols provide critical
insight into and documentation of the development
process, data sources, regulatory compliance pitfalls,
possible value misalignment, and, pertinent to this
paper, potential Red attack vectors. Audits should be



considered a primary Blue countermeasure against Red
for AIML systems in an adversarial environment.

This paper draws from the SMACTR framework for
internal audits (Raji et al 2020). The SMACTR
framework was designed by researchers at top
institutions; SMACTR has the benefit of being
specifically tailored to AIML systems in a production
setting.

The creators of the SMACTR framework
acknowledge that organizational and system
requirements will vary, and so any framework for
evaluation must be flexible enough to accommodate
these differing needs and use cases. Accordingly,
teams can and should carefully evaluate their needs
and the potential applications of the final product when
determining which steps to prioritize in the auditing
process:

Though not covered here, an equally important
process is determining what systems to audit and why.
Each industry has a way to judge what requires a full
audit, but that process is discretionary and dependent
on a range of contextual factors pertinent to the
industry, the organization, audit team resourcing, and
the case at hand. Risk prioritization and the necessary
variance in scrutiny is a separately interesting and rich
research topic on its own. The process outlined below
can be applied in full or in a lighter-weight formulation,
depending on the level of assessment desired (Raji et
al 2020, 38).

While this paper recommends that organizations
take the most comprehensive approach to SMACTR
that is institutionally feasible, sometimes a full audit is
not possible, or certain aspects of the auditing
framework may not apply to the AIML system in
question. Additionally, AIML systems in an adversarial
IW environment present specific challenges with regard
to model monitoring and maintenance which require
more than a one-time assessment, and implementation
of a full-scale audit for every model iteration could prove
burdensome.

For these reasons, several processes and artifacts
from the SMACTR auditing framework which are
uniquely applicable to an adversarial security setting
are given below. While certainly not a substitute for
auditing, application of these processes can provide
enhanced cyber resilience capabilites to an
organization in the absence of a full-scale audit. This
paper also recommends the adoption of these
processes at critical junctions in the MLOps workflow,
regardless of audit status.

Failure Modes and Effects Analysis (FMEA)

Failure Modes and Effects Analysis (FMEA) is a
fault avoidance technique in the aerospace industry and
safety engineering as a whole (Stamatis 2003); its
applicability to software engineering has been
demonstrated (Reifer 1979; Nguyen 2001; Ozarin &
Siracusa 2003; Ozarin 2008). FMEA is a “methodical

and systematic risk management approach that
examines a proposed design or technology for
foreseeable failures” (Raji et al 2020, 36). The purpose
of the FMEA is a systematic documentation of potential
engineering pitfalls, unintended consequences, and
other risks that might be associated with a system. The
FMEA process includes analysis of known potential
failure points, conducting literature reviews and
interviews with relevant stakeholders, and collecting
extant technical documentation (ibid).

This documentation of the known risks, literature,
and processes involved in the development of an AIML
system is beneficial to several stakeholders, as well as
crucial to the production of other artifacts described in
this framework. Critically, the FMEA provides a carefully
documented and ideally clearer picture of system
requirements and challenges to all members of
engineering and management teams. While a full
auditing process requires an FMEA, even in a scenario
in which a full audit is not required or feasible, the
FMEA informs later adversarial testing (Raji et al 2020,
41).

Adversarial Testing

Adversarial testing is a common practice in
software  development and network  security
administration, and has demonstrated effectiveness in
finding potential data poisoning attack vectors
(Steinhardt, Koh & Liang 2017). In the AIML cyber
resilience framework presented here, adversarial
testing begins with IW risks and other issues
documented in the FMEA (Raji et al 2020, 41).

Adversarial Testing of AIML takes a methodical
approach in attempts to nudge the system into “bad”
behavior. Testing may take a variety of forms and
approaches; these are based on potential failure points
identified in the FMEA and documented in artifacts
included in the system’s production documentation.
This process is distinct from, and complementary to,
adversarial pixel-manipulation attacks, and should be
employed as part of a diverse testing arsenal drawing
from the FMEA:

...direct non-statistical testing uses tailored inputs
to the model to see if they result in undesirable
outputs... This is distinct from adversarially attacking a
model with human-imperceptible pixel manipulations to
trick the model into misidentifying previously learned
outputs, but these approaches can be complementary.
This approach is more generally defined—as
encompassing a range of input options to try in an
active attempt to fool the system and incite identified
failure modes from the FMEA (Raji et al 2020, 41).

While critical to the initial assessment of an AIML
product or system, adversarial testing should continue
throughout the system lifecycle as part of development
best practices:

Additionally, proactive adversarial testing of
already-launched products can be a best practice for



the lifecycle management of released systems. The
FMEA should be updated with these results, and the
relative changes to risks assessed (ibid.).

For this reason, this paper recommends integrating
adversarial testing for data, bias, behavior, ethical, and
other unintended risks into existing MLOps workflows.
The frequency of re-testing should depend on
organizational needs and the nature of risk associated
with the model in the FMEA. Systems identified in the
FMEA process to have a larger attack surface,
potentially magnified social consequences for failure, or
feedback loops increasing Red’s access and/or
potential impact, will require more frequent testing.
Subsequent FMEA documents should be updated with
new adversarial testing results.

Datasheets & Model Cards

Datasheets in the MLOps workflow are a method
for thoughtful creation and documenting of datasets;
they are analogous to methods in the electronics
hardware industry, where datasheets describe the
operating characteristics, recommended uses test
results, and so forth of a particular component (Raji et
al 2020, 41). Decomposition of Red attack vectors
makes the benefits of datasheets for physical and even
software components clear. Organizations cannot
create all components of any modern AIML system
in-house, whether physical or virtual, and thus must rely
on a trusted, standardized mechanism for
communicating  critical information  about the
components they outsource. While datasheets are
standard in other mission-critical sectors, leading AIML
practitioners to note their adoption in the field of
datasets has yet to become widespread (ibid), creating
a potential security gap between organizations that
implement datasheets into the MLOps workflow, and
those which do not.

In a cyber security/resilience framing, datasheets
document critical potential failure points and attack
surfaces and provide data for adversarial testing. This
paper urges AIML practitioners to consider a model or
system’s security assessment incomplete without
having completed datasheet(s) for all datasets as
thoroughly as possible and checked in as mandatory
artifacts in the model development workflow.

The framework laid out by Gebru et al (2018)
provides questions for data preparers to answer, as well
as a workflow to guide the process. These questions
span six areas of the dataset creation process:
motivation;composition,
pre-processing/cleaning/labeling; uses; distribution; and
maintenance. In an IW scenario, it is possible to
imagine Red attack vectors within each of these areas.
Because AIML systems are only as good as the data on
which they are trained, and because many AIML
systems rely on data to which the general public,
including Red attackers, may have some form of
access, documenting dataset creation as thoroughly as
possible should be considered a baseline preparedness
step for AIML cyber resilience.

Datasheets are complimented by mode/ cards (Raji
et al 2020, 41, Mitchell et al 2019). Model cards are an
artifact created as part of the model documentation
process. AIML systems should not be considered
properly scoped for security vulnerabilities without full
documentation, including model cards checked into
repositories as part of model governance procedures.

The importance of model cards in an IW scenario
becomes apparent when considering the information
they are intended to convey:

Model cards serve to disclose information about a
trained machine learning model. This includes how it
was built, what assumptions were made during its
development, what type of model behavior different
cultural, demographic, or phenotypic population groups
may experience, and an evaluation of how well the
model performs with respect to those groups (Mitchell
et al 2019).

As argued in previous sections of this paper, in a
contested Information Warfare environment bias is not
only an ethical concern but a practical one that can
open AIML systems to malicious manipulation.
Feedback loops amplify these concerns. In the IW
environment, model cards fulfill the critical role of
documenting where these potential attack vectors may
lie.

In addition, properly implemented model cards also
serve to document an original model state to which a
system may return after an attack. The benefits of
integrating model cards into the MLOps workflow to an
organization’s overall cyber resilience strategy are
clear.

Blueprint: an MLOps approach

Operationalizing AIML systems into production can
be challenging for organizations for a variety of
reasons; these may be organizational, ranging from
talent shortages to lack of development operations
support in the institutional culture (Ronanki & Davenport
2017; Balakrishnan et al 2020); or directly related to the
nature of AIML development itself; challenges identified
in the literature include the customization and reuse of
models, managing model component modularity
(avoiding component entanglement), and data
acquisition and management (Karamitsos, Albarhami &
Apostolopoulos 2020; Amershi et al 2019). Factors in
the research and publication environments such as field
nascence and non-traditional publication venues (owed
in large part to the scale and speed of research) affect
teams' ability to stay current in the state-of-the-art
(Mart'inez-Fern'andez et al 2021). An Amazon
Research paper listed model retraining decisions and
adversarial scenarios as specific examples of pertinent
challenges in AIML production deployment (Schelter et
al 2018). The Google Practitioner’s Guide to MLOps
gives several factors considered complexities specific to
AIML engineering. Among these are: Preparing and
maintaining high-quality data for training ML models;
Tracking models in production to detect performance



degradation; Performing ongoing experimentation of
new  data sources, ML algorithms, and
hyperparameters, and then tracking these experiments;
Maintaining the veracity of models by continuously
retraining them on fresh data; and most notably,
Handling concerns about model fairness and
adversarial attacks.

The whitepaper additionally gives several insights
into the state of AIML development. In short, successful
deployment of AIML systems remains elusive for many
organizations:

Despite the growing recognition of AI/ML as a
crucial pillar of digital transformation, successful
deployments and effective operations are a bottleneck
for getting value from Al. Only one in two organizations
has moved beyond pilots and proofs of concept.
Moreover, 72% of a cohort of organizations that began
Al pilots before 2019 have not been able to deploy even
a single application in production...models don’t make it
into production, and if they do, they break because they
fail to adapt to changes in the environment (Salama,
Kazmierczak, and Schut 2021).

The tendency of teams to do experimentation
primarily through ad hoc work, combined with factors
hindering the adoption of best practices from software
engineering to the AIML development environment, are
significant contributors to the AIML deployment
bottleneck:

...ML systems cannot be built in an ad hoc manner,
isolated from other IT initiatives like DataOps and
DevOps. They also cannot be built without adopting and
applying sound software engineering practices, while
taking info account the factors that make
operationalizing ML different from operationalizing other
types of software (ibid).

Integrating MLOps processes into organizational
workflows does not just increase the likelihood of
successful deployment, it can also help organizations
manage risk:

Organizations need an automated and streamlined
ML process. This process does not just help the
organization successfully deploy ML models in
production. It also helps manage risk when
organizations scale the number of ML applications to
more use cases in changing environments, and it helps
ensure that the applications are still in line with
business goals (ibid).

The tiered solutions proposed in  this
paper—beginning with appropriate documentation in the
form of model cards and datasheets for datasets, and
progressing in maturity to SMACTR audit, periodic
adversarial testing, and triggers for increased scrutiny in
case of model decay—are designed to be implemented
in a streamlined MLOps workflow for greater cyber
resilience  with production scalability. Increased
alignment with organizational goals and stated public
values is a separate benefit of proper AIML system

operationalization.

Reproducible results are a cornerstone of AIML
experimentation and engineering for system stability
and resilience, but software engineering best practices
must be adapted to the AIML development workflow.
Thus the potential contribution of an MLOps approach
to overall AIML system security is high.

Key MLOps Processes: Prototyping &
Training Operationalization, Continuous
Monitoring & Retraining, & Model
Governance

Rather than serve as an exhaustive guide to
implementing MLOps workflows, this paper focuses on
integrating best practices for AIML cyber resiliency into
key processes within the MLOps pipeline: prototyping,
fraining operationalization, & model governance;
continuous training, and continuous monitoring. Areas
of focus within these processes include parallel
development and testing, support for lineage analysis,
and, in particular, the development of an IW security
asset portfolio including triggers for model performance
review. Finally, this paper introduces a formalized
workflow for security analysis and systems for
implementation.

There are of course additional avenues for
increased security and system resilience which will vary
among organizations. Practitioners are encouraged to
adapt the fullest suite of MLOps best practices that are
both relevant to and feasible for their organization’s
needs.

Prototyping, Training Operationalization &
Model Governance

This paper proposes the development of a model
security asset portfolio and security protocols for
Information Warfare (IW) scenarios. This asset portfolio
is organized around and integrated within three core
MLOps capabilities, beginning in the mode/ prototyping
stage with a parallel development process consisting of
AIML experimentation, coupled with scoping of security
attack surfaces in the FMEA, adversarial testing, and
datasheet documentation. Optimally, this process also
includes a full audit using the SMACTR framework for
AIML. However, this paper recommends that AIML
systems should not be considered fully documented for
IW security purposes without at a minimum FMEA,
adversarial testing, model cards, and datasheets for
training data.

AIML prototyping in most organizations may be
represented as a development cycle (fig 3). Outputs of
the AIML experimentation/prototyping cycle typically
include artifacts such as notebooks & other systems for
tracking experiments, hyperparameters, and
configurations for model training, and metrics checked
into a metadata repository; trained model(s) checked
into a model repository; as well as code and other



configurations for a model training pipeline. Importantly,
the result of this phase is not a trained model, but rather
a formalized model pipeline for later training
operationalization.

Research

Definition &
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Model Data
Validation Acquisition

Model Exploratory Data
Prototyping Analysis (EDA)

k Feature (_J
Engineering

Fig 3: Canonical AIML Development Cycle

This paper recommends an additional output of the
experimentation process, developed in parallel with
model prototyping: a model security portfolio containing
three key assets. The first is a set of potential attack
vectors documented from the FMEA and subsequent
adversarial testing. The second artifact within the
proposed model security portfolio is a formalized set of
baseline triggers for model performance review drawn
from the model’s FMEA and adversarial testing results,
as well as any other pertinent documentation arising
from the auditing process (if one is performed). These
should be indicators of potential IW attacks drawn from
the attack vectors discovered in the FMEA and
adversarial testing processes. The third recommended
security asset is a set of formalized and
operationalizable comparison threshold points for the
automated monitoring process, implemented in case of
any triggered model decay. Similarly, these thresholds
are indicators of potential IW attacks discovered in the
prototyping process and act as a redundant system to
the FMEA/testing-derived model decay triggers.
Automation of these security checks within the model
monitoring pipeline is intended to minimize human

review costs. Figure 4 shows the AIML development
cycle unrolled, with recommended mitigation and
documentation processes in parallel.

The model security asset portfolio is checked in
along with other prototyping process artifacts and
implemented within the continuous monitoring process.
Triggers for review, as well as comparison thresholds,
should be considered key security assets within the
model portfolio and should be treated accordingly.

The role of the model governance process is to
ensure that models are not released into production
without  requisite = documentation, including the
FMEA/adversarial testing-derived security portfolio
described above, and in the figure below.

Continuous Monitoring & Training
Pipelines

Within a canonical MLOps continuous monitoring &
training system there exist numerous opportunities to
operationalize state-of-the-art IW vector detection and
defense mechanisms. Anomaly detection (Paudice et al
2018), along with varying methods for detection and
mitigation such as gradient shaping (Hong et al 2020);
adversarial training (Geiping et al 2021; Vijaykeerthy et
al 2019); activation clustering (Chen et al 2019); and
reverse engineering (Dong et al 2021) have been
demonstrated viable against data poisoning backdoor
attacks. Specific methodologies should be explored and
elucidated in the FMEA and adversarial testing phases
of prototyping. Novel attack vectors require robust and
constantly evolving defenses, highlighting the
importance of operationalizing the referencing and
updating of the model security asset portfolio.

Continuous Monitoring

Within the continuous monitoring pipeline, a key
asset of the model IW security portfolio is
operationalized: FMEA- & testing-derived triggers for
model decay review, which work in tandem with a
failsafe, consisting of a secondary set of thresholds for
data evaluation similarly adapted from the FMEA and
adversarial testing phases of model prototyping. The
secondary evaluation thresholds are referenced during
the data validation phase of the continuous training
pipeline. Failing either step of this two-phase validation
triggers a human review.

SMACTR Audit

Failure Modes and Effects Analysis (FMEA)

Datasheets for Datasets

Research
Definition & —
Scoping

Data Exploratory Data
Acquisition

Analysis (EDA)

Adversarial Testing

Feature Model Model
Engineering Prototyping Validation

Fig 4: Parallel development processes for AIML model prototyping and security portfolio



Continuous Training

Depending on their use case, most models require
retraining at some point. The frequency with which
models are trained on new data depends on project
requirements. Model retraining may be scheduled,
triggered by some event or data threshold, or
instantiated manually on an ad hoc basis. Regardless of
how retraining is initiated, model scalability and
effectiveness in production necessitate a training
pipeline to automate retraining and track the necessary
artifacts to support lineage analysis-the process of
tracking a particular model back to its originating
dataset, supporting documentation, and metadata—as
well as other important model governance and
accountability processes.

Organizations can improve system security via
consistent, formalized pipeline metadata tracking in
several ways. These include the ability to debug
systems, which are crucially aided by the consistent
availability of tracked metadata. Another benefit to
teams is model reproducibility, which plays a critical role
in model scalability and the ability to deploy to
production. The ability to reproduce, scale, and debug
models in production are bedrock security practices for
AIML deployment.

Lineage analysis can also play a critical role in
model security in an IW environment. The ability to
track a model back to the dataset on which it was
trained, as well as relevant metadata (including pipeline
evaluations, data transformation steps,
hyperparameters, and other configurations), are vital
elements within the incident analysis workflow
described below.

Properly implemented metadata tracking for
lineage analysis also supports the feasibility of
implementation for organizations. It may not be practical
to create a new datasheet for every new model
retraining iteration. Implementing IW security measures
may become much more feasible when dataset
documentation and tracking begin with detailed
datasheets and are supplemented by metadata tracking
capabilities already present in a well-implemented
training pipeline.

Malicious IW attacks may manifest in data systems
in different ways, depending on the AIML system
specifics and use case. Detailed attack vectors have
been omitted here for security and scope. Practitioners
are encouraged to decompose the attack paths of their
data sources and other relevant system concerns using
the Boolean system described above. It is important to
note that while specific attack surfaces will vary among
(and even within) organizations, all teams can benefit
from robust model and dataset documentation.

For IW security purposes this paper assumes
MLOps best practices in place for training pipelines with
robust lineage analysis capabilities and instead focuses
on integrating an IW incident response workflow into a

specific instantiation case of the training pipeline:
retraining that is triggered by detected model
performance degradation. Model retraining that is
manually initiated or scheduled on a recurring basis can
certainly utilize the workflow as well, supported by
formalized documentation and lineage analysis
capabilities.

In a typical AIML pipeline, the retraining process
may begin with a trigger from the continuous monitoring
system. Training data is extracted from dataset and
feature repositories; data is then validated to check for
corruption, schema or distribution skews, etc.

This data validation stage is relevant to the security
process for several reasons. Models are only as good
as the data they are trained on, and data can change
over time in many ways, including shifting distributions,
or the addition or loss of features. Without proper
metadata/artifact and dataset tracking, this can be
especially difficult to notice throughout multiple training
iterations; this is why lineage analysis capabilities are a
critical tool for teams when models perform
sub-optimally. Checking the data should thus be a go-to
step when evaluating model performance decline.

In an IW environment, data shifts might also be
evidence of a malicious attack. Beyond typical model
performance triggers implemented in standard MLOps
systems, this paper recommends adding the use of
triggers derived from the FMEA and adversarial testing
performed during the parallel
experimentation/development process as an added
layer of security for AIML systems. Also recommended
is the introduction of a set of FMEA- and adversarial
testing-derived comparison points to the retraining
pipeline and its data validation subprocess.

Automation and Reuse of Model Assets for
Increased Implementation Feasibility

The addition of FMEA/adversarial testing-derived
triggers to the model monitoring pipeline is intended to
increase the feasibility of implementation for
organizations. In many cases it may not be practical to
implement a full human review of models at every
retraining junction; doing so could potentially be so
burdensome on organizations as to limit the scope of
adoption. For these reasons this workflow utilizes the
“pbuilt-in” functionality of retraining triggers in most AIML
pipelines, re-using the FMEA and adversarial testing
results to aid in incident response automation.

Full automation of this process is impractical for
several reasons. Security analysis requires skilled
workers; this is unlikely to change. However,
automating the flags that invoke expensive human labor
to the greatest extent possible can reduce overall costs,
while increasing adoption feasibility. Full human review
of the FMEA and adversarial test results, as well as
lineage analysis, is triggered only after pertinent data
checks have been run with backup systems.



Because the organizational cost of false negatives Triggers are added to the continuous monitoring

in IW security scenarios may be substantially higher pipeline which monitors for model decay. Comparison

than for false positives, detection of potential malicious thresholds are integrated into the data validation

incidents is prioritized, to reduce human review costs workflow of the continuous training pipeline (fig 5) on

via primary automation. In this pipeline, built-in data the following page.

validation functionality thus acts as a gatekeeper for

both additional human review and additional model The continuous monitoring pipeline loads inference

training. logs, IW security assets, model baseline statistics and
reference schema, and other artifacts. The monitoring

Incident Analysis Workflow engine compares model performance metrics with

thresholds from the security portfolio. If criteria are met
for a potential IW security incident, security review is
initiated and relevant parties notified via email, chat, or
other internal notification system.

This paper recommends the following workflow as
a starting point for MLOps security integration and
incident response. Organizations are encouraged to
adopt recommendations that apply to and are feasible

) o If criteria are not met for a potential IW security
for their specific use case.

incident, the monitoring process continues with checks
for schema skews, distribution or concept drift, and/or
any applicable model performance/decay metrics. In the
case of retraining triggers separate from the security
portfolio assets, the continuous training pipeline is
initiated. Retraining triggers are documented in the
model portfolio (fig 6) on the following page.

The process begins in prototyping, where the
model IW security asset portfolio is produced in a
parallel development process which includes the
development of an FMEA and adversarial testing.
These results are used to derive the three main assets
within the portfolio: a set of potential attack vectors
documented from the FMEA and subsequent
adversarial testing; a formalized set of baseline triggers
for model performance review drawn from the same
source(s); and a set of formalized and operationalizable
comparison threshold points for the automated
monitoring process, to be implemented in case of any
triggered model decay.

The continuous training system requests relevant
model artifacts and metadata from data stores,
including the model security asset portfolio and
threshold comparison points for data validation. Current
model training data is evaluated against the validation
thresholds. If IW security incident thresholds are not
met, model training continues, and incident
documentation is added to the model metadata. If IW
security incident criteria are met, the system proceeds
to alert model owners to potential system problems,
triggering a human security review (fig 7) contained on
the next page.

The model security portfolio materials are checked
into the metadata repository; triggers and comparison
points are added to relevant processes within the
continuous monitoring and training pipelines. These
include evidence for specific attack vectors discovered
in the FMEA and adversarial testing processes during
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Fig 5: Outputs of the AIML prototyping and security development processes. Model security portfolio is generated in prototyping, and checked into
the model metadata/artifact repository
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Human security review integrates model
datasheets, lineage analysis (if the model has been
retrained since datasheet production), security portfolio
assets including FMEA and adversarial testing results,
and SMACTR audit documentation if available. All
documentation and review results are added to the
model security portfolio. Incident documentation is
submitted for regulatory compliance where applicable.

A Maturity Index for AIML Information
Warfare Security Preparedness &
Resilience

For AIML systems in a contested Information
Warfare environment, this paper recommends a dual
maturity index, building off the recommendations of the
RAND Project Air Force Measuring Cybersecurity and
Cyber Resilience paper, and including maturity level
indexing specific to AIML systems. Both indices are
given side-by-side below (fig 8).

Finally, this paper recommends integrating the
following AIML system-specific questions into the
maturity assessment process. The more deeply these
questions are answered in the affirmative, the more
mature the system:

Question Group 1: Has a baseline trusted state
been defined for each system to return to?

Additional [G1] Questions for AIML Systems: Do
datasheets for datasets and model cards exist? Are
there robust, formalized pipelines for metadata tracking
to support lineage analysis?

Question Group 2: Is continuous monitoring done?

Additional [G2] Questions for AIML Systems: Is
there a no-code or code-forward CI/CD pipeline,
including continuous monitoring with security triggers
and data validation thresholds within the continuous

Maturity Level
Characteristics

General Cyber Resilience

Cyber Resilience Characteristics of AIML
Systems

Mo formalized processes for prototyping, W
analysis, or development of secunty assets.
Operationalizable MLCOps pipelines with

(5) Most
immature

Awareness of how Red might act by a
vector against a system or mission is
inadequate. Such examples for
access include incomplete knowledge
of standard pathways for data inputs
and outputs of a system.

continuous monitonng, training/continuous
retraining, and model govemance for models
deployed to production do not exist. No formal
W secunty reviews/documentation process in
place. Development is primarily an ad hoc
process.

(4) Immature

How Red might act by a vector is
understood in the context of the
system or mission under review, and a
baseline trusted state is defined.

Formalized MLOps pipelines--whether no-code,
low-code, or a full code-first CI/CD pipeline-- are
standard for models in production. Model

development/prototyping includes model cards
& datasheets, FMEA, adversanal testing
checked in with mode! metadata.

(3) Intermediate

Solutions to counter a Red vector are
identified.

Fomalized MLOps pipelines are standard for
models in production. Model
development/prototyping includes model cards
& datasheets, FMEA, adversanal testing
checked in with model metadata, and
development of IW secunty asset portfolio,
including triggers & threshold points for
automated evaluation. Human review workflow
in place for incident response.

Solutions to counter a Red vector are
implemented with continuous

Formalized MLOps pipelines, secunty asset
development workflow, & human review
workflow in place and model prototyping

(2) Mature monitoring. process includes adapted SMACTR audit./
Solutions to counter a Red vector are |Pipelines, systems & incident response

(1) Highest tested, exercised, and found to be waorkflows are tested, exercised, and found to be

maturity adequate. adequate.




training process, in place for models in production?

Question Group 3: Have resilient methods been
identified to return to this state?

Additional [G3] Questions for AIML Systems: Has
the organization formalized an incident response
workflow (such as the one recommended in this
paper)?

Question Group 4: Can these actions respond
within Red’s OODA loop?

Additional [G4] Questions for AIML Systems: What
special OODA considerations exist within the system?
Are there feedback loops which might tighten Red's
OODA loop? How have these been addressed?

Question Group 5: Is the recovery time adequate
for mission needs?

Additional [G5] Questions for AIML Systems: What
are the consequences for losing control of data? Do
these consequences become amplified over time? Is
the projected recovery time acceptable within this
collateral context?

Question Group 6: Have these measures been
implemented?

Additional [G6] Questions for AIML Systems: Are
formalized prototyping, development, deployment, and
monitoring systems in place?

Question Group 7: Have they been exercised and
tested?

Additional [G7] Questions for AIML Systems: Have
prototyping, development, deployment, and monitoring
workflows been tested for workability and resilience?
Have model security portfolio assets and human review
workflows been formalized and tested in the production
environment?

Question Group 8: Have they been found to be
adequate?

Conclusion

Concerns around cybersecurity vis-a-vis
Information Warfare have taken a pronounced role in
research and public policy. While governments are
increasing regulatory compliance requirements, and
researchers push out papers demonstrating actionable
attacks against critical AIML infrastructure systems,
organizations struggle with implementing MLOps best
practices and security workflows. Moreover, there exist
few resources bridging the gap between high-level
frameworks and practical implementation.

Practical advice for assessing cyber resilience in
the contested IW environment includes the use of
maturity indices versus overly specific quantitative

measures, and decomposing possible attack vectors
using a Boolean attack path structure.

With robust model and dataset documentation,
such as the security asset portfolio described above, in
concert with pipeline support for robust model lineage
analysis, opportunities exist for automation of IW/data
security checks within a canonical MLOps pipeline.
Integrating these assets into the MLOps security
workflow re-utilizes artifacts created in regulatory/ethical
compliance, maximizes automation with redundant
systems, and minimizes the need for costly human
review.

Lastly, within this framework there exist numerous
avenues for customization and adoption to meet the
demands of regulatory compliance at production scale.
Integration and testing of specific frameworks against
use cases and/or security scenarios offers a fascinating
avenue for future investigation. As interest in AIML
security grows, novel applications—and novel attacks to
match—will continue to provide researchers and
practitioners with new challenges, at the speed of
information.
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